Индукционные лампы: особенности и преимущества

Световой поток

Заранее предупреждаю, что измеренные значения не являются очень точными. Погрешность составляет до 5%, и она подтверждена многочисленными измерениями. Предварительно прогреваем до рабочей температуры в течение 30 минут. Максимальная яркость на холодном образце бывает максимальная, с повышением температуры эффективность падает.

Измеренные параметры СА 220-6 СА 220-8
Яркость после включения, Лм 652лм 815лм
Яркость после прогрева, Лм 568лм 699лм
Заявленный световой поток 600лм 800лм
Эффективность Лм/Вт 97,9лм 97,4лм
Разница в % между обещанной и полученной -5,3% -12,6%

Угол свечения большой, но с торца нитевидного элемента света гораздо меньше, в некоторых светильниках этот показатель играет большую роль. Свет, отраженный от белого потолка даёт более равномерное освещение помещения. При замерах на расстоянии 30 см сбоку и с торца освещенность получилась 990 Люкс и 150 Люкс соотвественно, разница в 6,5 раз.

Измерения проводились в кубе со светоотражающими стенками. Значения люксметра делим на коэффициент 2,16, чтобы из Люксов получить световой поток в Люменах.

1510 делим на 2,16 = 699лм

 1228 делим на 2,16 = 568лм

Результаты получились ниже заявленных по Люменам. Но различимость объектов так же зависит от количества Кельвинов. Различимость при 3000К и 7000К отличается в 2 раза. Проще говоря при дневном свете видно лучше, чем при желтом от нити накала.

Возьмем условно, что Томич дает на 25% лучшую различимость по которой мы обычно оцениваем хорошая лампочка или нет.

Стандартные изделия Ильича имеют характеристики:

  • 60вт  даёт 650лм;
  • 75вт даёт 850лм.

Посчитаем эквивалент источника накаливания, с учетом этого коэффициента:

  • 568лм * 1,25 = 710лм
  • 699лм * 1,25 = 873лм

С учетом коэффициента мы получили значения, подтверждающие, что они действительно подходят для прямой замены на 60вт и 75вт, которые равные указанным на упаковках.

Лампа ДНАТ 150

Полное описание

Считается, что натриевые лампы ДНаТ высокого давления на сегодняшний день — один из наиболее экономичных источников света. Их широкое, повсеместное применение подтверждает этот факт — лампы ДНаТ различной мощности (70, 150, 250 или 400 Вт) используются, как правило, для уличного освещения, в том числе для освещения транспортных магистралей, туннелей, вокзалов, аэродромов, промышленных территорий — т.е. везде, где требуется обеспечить кoнтрaстную видимoсть oбъeктoв в любых погодных условиях. Еще одна распространенная область применения лампы ДНаТ — освещение в теплицах, цветниках или питомниках для растений. Аббревиатура ДНаТ расшифровывается как «дуговая натриевая трубчатая лампа». Конструкция и принцип работы лампы ДНаТ довольно просты. Во внешнем стеклянном баллоне лампы ДНаТ есть специальная «горелка», которая представляет собой цилиндрическую разрядную трубку из особого материала — чистой окиси алюминия. Трубка заполнена смесью паров натрия и ртути, здесь присутствует также зажигающий газ ксенон. Электрический разряд (дуга) создается в парах натрия высокого давления. При этом лампа ДНаТ (70, 150, 250 или 400 Вт) имеет, как правило, специфический цвет излучения с золотисто-белым или оранжево-желтым оттенком. Натриевые лампы ДНаТ подключаются специальным образом: в первую очередь, для этого необходимы специальный пускорегулирующий аппарат (или иначе — электромагнитный/электронный балласт) и импульсно-зажигающее устройство (ИЗУ). Технические характеристики и особенности Несмотря на очевидные достоинства лампы ДНаТ (экономичность, высокая светоотдача — до 130 лм/Вт, длительный срок службы — в среднем от 12 000 до 25 000 часов), некоторые технические характеристики таких ламп существенно ограничивают сферу их применения. Если учитывать такую характеристику, как, например, цветопередача, то лампа ДНаТ (250, 400 или иной мощности) является оптимальным выбором далеко не всегда. Дело в том, что использование ламп такого типа целесообразно только при невысоких требованиях к цветопередаче. Кроме того, лампа ДНаТ (70, 150, 250 или 400 Вт) предполагает, как правило, длительное время включения — до 6-10 минут. Эффективность натриевых ламп прямо зависит от температуры окружающей среды, что также ограничивает их применение — в холодную погоду они светят хуже. Не совсем однозначно и утверждение, что они экологичнее ртутных ламп, так как в качестве наполнителя в большинстве ламп ДНаТ применяется соединение натрия с ртутью (амальгама натрия). Натриевые лампы высокого давления обладают высоким КПД (примерно 30%). Исходя из спектрального анализа света, излучаемого лампами ДНаТ, на длины волн 550-640 нм приходится наибольшее излучение, что наиболее близко для восприятия человеком. Цветопередачу можно улучшить используя разнообразные газовые смеси и люминесцирующие материалы, а также изменяя давление в лампе. Однако подобные приемы уменьшают КПД и световой поток лампы. Технические характеристики Тип лампы Мощность, Вт Световой поток, лм Световая отдача, лм/Вт Средняя продолжительность горения, ч ДНаТ 70 70 5800 80 6000 ДНаТ 100 100 9500 95 6000 ДНаТ 150 100 14500 100 6000 ДНаТ 250 250 25000 100 10000 ДНаТ 400 400 47000 125 15000 Стоит отметить, что при изменении питающего напряжения у ламп ДНаТ значительно меняется не только напряжение работы лампы, но и другие ее параметры. Поэтому нужно учесть, что производители рекомендуют эксплуатировать их при незначительных изменениях питающего напряжения (+/- 5% от номинального значения). Применение Мощность является важнейшей технической характеристикой лампы ДНаТ — выбор ламп определенной мощности должен обязательно соответствовать сфере ее применения. Известно, например, что лампа ДНаТ 70, 150, 250, 400 Вт является очень эффективной в случае искусственного освещения теплиц, цветников, питомников для растений. Для выращивания растений оптимальным вариантом является лампа ДНаТ 150, или же 250 Вт. В большинстве случаев для этих целей подойдет также лампа ДНаТ 400 Вт (но такие лампы ни в коем случае нельзя помещать ближе, чем в 50 см от растений). Более мощные лампы опасно устанавливать в теплицах и цветниках — они могут просто сжечь растения. Что касается освещения улиц, подземных переходов, закрытых спорткомлексов, то для этих целей обычно используется лампа ДНаТ 150 или же лампа ДНаТ 70 Вт

Важно учитывать также степень защиты ламп от пыли и влаги: для уличного освещения подойдут лампы ДНАТ с параметром IP 65

Отвод тепла и нагрев

Кроме обычной прозрачной колбы иногда можно встретить модели со специальным напылением. Оно создает более мягкое и теплое освещение.

Так как светодиоды в процессе работы сильно греются, необходимо оперативно отводить от них тепло. В старых светодиодных лампочках это делается через массивные радиаторы, которые существенно увеличивают габариты изделия.

А в филаментных внутри колбы закачан инертный газ на основе гелия. Это тот, при вдыхании которого, вы начинаете на некоторое время разговаривать как маленький ребенок.

Он то и способствует быстрой передаче тепла от кристаллов к стеклянным стенкам и далее в окружающее пространство.

То есть, внутри лампочки вовсе не вакуум.

Без газа и стекла сами стержни разогреваются весьма заметно.

А вот оперативный отвод тепла и большая площадь стеклянных стенок, по сравнению с площадью самих светодиодов, позволяют филаментному источнику света не нагреваться более 50-60 градусов.

В то же время попробуйте дотронуться до включенной лампочки накаливания. Некоторые умельцы из них даже делают инфракрасные обогреватели.

И весьма успешно.

Устройство индукционных светильников

Несмотря на множество отличий в непосредственном рабочем процессе, индукционные устройства все же относятся к сегменту распространенных газоразрядных ламп. Главной же особенностью таких светильников является отсутствие электродов. Впрочем, и это отличие носит условный характер. Основу конструкции также составляет колба, в которой содержится плазма – она и выступает в качестве генератора световой энергии. Кроме того, индукционные лампы дополняются газовым баллоном, который располагается рядом с магнитной катушкой. Безэлектродными такие устройства называют по той причине, что прямой контакт рабочего элемента с газовой средой не предусматривается. Также отсутствие классических электродов из металла внутри баллона повышает эксплуатационный срок прибора. Как показывает практика, светильники такого типа не утилизируются вплоть до момента, пока не будет истрачен ресурс люминофора. Это соответствует примерно 100 000 часов эксплуатации устройства.

Если лампа не работает ?

По мере старения натриевые лампы приобретают мерзкую привычку «мигать» т.е. лампа включается, разогревается как обычно, потом вдруг гаснет и через минуту все повторяется. Если вы заметили за ней такое поведение – попробуйте поменять лампу. В случае если смена лампы не помогает – нежно измерить напряжение в сети, оно может быть ниже обычного… Если мигание происходит нерегулярно – возможно виноват плохой контакт или скачки напряжения в сети.

Бывает, что после включения светильника слышно как трещит ИЗУ (т.е. напряжение есть), но лампа даже не пытается зажечься. Чаще всего это случается из-за пробоя с проводе, идущем от ИЗУ к лампе или говорит о полностью выгоревшей лампе, реже бывает виноват обрыв провода между балластом и фонарем или подгоревшее ИЗУ.

Попробуйте сменить провод между ИЗУ и лампой

Обратите внимание на состояние контактов ИЗУ. Если не поможет – попробуйте поменять лампу. Если не помогает – отключите ИЗУ (иначе своими импульсами оно может сжечь вольтметр!) и померяйте напряжение на патроне лампы – у ДНаТ оно должно соответствовать сетевому

Если напряжение на патроне есть – меняйте ИЗУ

Если не помогает – отключите ИЗУ (иначе своими импульсами оно может сжечь вольтметр!) и померяйте напряжение на патроне лампы – у ДНаТ оно должно соответствовать сетевому. Если напряжение на патроне есть – меняйте ИЗУ.

Если же светильник вообще не подает признаков жизни: ИЗУ не жужжит, лампа не светится – скорее всего или выбило предохранитель или нарушен контакт в сетевом шнуре. Возможно виновато сгоревшее ИЗУ или обрыв обмотки в балласте – проверьте балласт как описано ниже, если он целый – меняйте ИЗУ.

Балласт проверяется обычным Ом метром. В норме сопротивление у них порядка 1–2 Ом. Если сопротивление значительно больше – значит или обрыв в обмотке или нарушен контакт между выводами обмотки и соединительной колодкой (попробуйте подтянуть винты). При межвитковом замыкании все сложнее – на сопротивление постоянному току оно влияет очень мало из-за чего трудно обнаруживается, при этом мощность на лампу поступает гораздо большая чем надо. Когда на лампе превышение по мощности – она быстро перегревается и гаснет, в результате наблюдается все то же «мигание».

Как можно осветить аквариум

Существует два несложных способа организовать освещение. Первый способ — самый простой. Изготовленная светодиодная подсветка для аквариума своими руками поможет значительно снизить ваши затраты. Вам понадобится светодиодная лента.

Далее вы просто аккуратно наклеиваете её по периметру конструкции

Обратите внимание, что освещение аквариума светодиодной лентой позволит сделать освещение максимально равномерным, хотя и не достаточно энергоэффективным. Такая лента продается в мотке

С одной стороны ленты расположены светодиоды, а с другой — двухсторонний скотч. Но следует иметь в виду, что этот вид подсветки не является единственным источником для вашего аквариума. Для создания полноценного освещения целесообразно использовать дополнительно светодиодные лампы Т5 или Т8. Место, где фиксируется лента и шнур должно иметь изоляцию на основе силиконового заполнителя.

Второй способ освещения — это монтаж светодиодных ламп. Он более популярный и позволяет создать полноценное и качественное освещение всего резервуара. Собрать светодиодный светильник для аквариума своими руками несложно. Светильник состоит из ламп определенного количества. Сколько их нужно взять? Для емкости на 200–300 литров понадобиться 40 ламп точечного вида. Каждая лампочка должна быть рассчитана на 270 люмен (3 Вт каждая).

Магнитные балласты (ЭмПРА)

Магнитные балласты – это проверенная веками технология, однако в наш век слегка архаичная по дизайну. Магнитные балласты – это по своей сути электромагниты, отсюда и название. Электричество подается на одиночную индукционную катушку (медный провод, намотанный на стальной сердечник), которая, в тандеме с конденсаторами уменьшает ток до необходимого.

Магнитный балласт – это самое простое из электроприборов, что только можно придумать. Он был стандартом многие годы потому что других вариантов просто не было. Не поймите неправильно, магнитные балласты делают то, что и должны, но сейчас в век продвинутых технологий, у садоводов появилось очень много других вариантов.

Одна проблема, с которой обладателям магнитных балластов не придется сталкиваться – это радиочастотные помехи. Старомодные магнитные балласты не выделяют радиочастотных помех, в то время как цифровой балласт вполне может стать причиной появления проблем с соседствующим электронным оборудованием, например, Wi-Fi роутерами.

Если вы планируете немного сэкономить на новой системе и приобрести магнитный балласт, то можете так и сделать. Однако, как и все старые технологии, они работают не так эффективно, как современные – магнитные балласты примерно на 10% менее эффективны в плане расхода электроэнергии.

Вопросы безопасности и утилизации

Риски в эксплуатации натриевых ламп связаны с высоким давлением и температурой внутри горелки

Даже поверхность колбы нагревается до 100 °С и может вызвать ожог при неосторожном обращении. Существует вероятность разрыва колбы под влиянием вырвавшихся из горелки раскалённых газов

С целью защиты от последствий разрушения делают светильники, в которых лампы находятся за толстым стеклом

Обратите внимание на конструкцию светильника для уличного освещения (рис. 5)

В связи с наличием ртути в натриевых лампах применяются особые требования к их утилизации. Использованные приборы запрещается выбрасывать в баки для обычного мусора. Их необходимо отправлять на специальные предприятия для обезвреживания и переработки.

Технические характеристики

Также как и другие энергосберегающие лампы, индукционные модели обладают разным световым потоком. Наибольшее распространение получили светильники с потоком от 2700К до 6500К.

Приведем технические характеристики некоторых популярных моделей индукционных ламп.

Биспектральные лампы — их применяют для выращивания растений:


Кстати, небольшой мощности индукционки, светят рассеянными лучами и поэтому не жгут растения, даже при низкой высоте подвеса таких фитоламп – от 40см до 1,5м.

Отдельные растения, например томаты, очень любят такой диффузионный свет. Более того, спектр таких ламп на 2/3 соответствует ФАР (фотосинтетической активной радиации).

А это именно та радиация, которая и способствует активному росту и цветению растений в гроубоксах, теплицах, оранжереях.

Другие разновидности ламп и их технические параметры:

ПрожекторыСветильники для высоких потолковНакладные для стенКонсольные для опор освещения

Вообще что такое филамент?

Мы привыкли, что все современные светодиодные лампы, которые есть в продаже, устроены на SMD диодах. Первоначальные лампы на DIP диодах уже давно отжили своё, т.к. не эффективны — их уже трудно сыскать

Сейчас самые популярные в форме груши, свечи, шариков, таблетки gx53 — они все в основном идут на SMD диодах 2835, 5730, 5630 типа.

И даже есть уже лампы на COB диодах — это чипы с очень плотным монтажом для изготовления в основном миниатюрных ламп G4 и G9. А также MR16 и другие лампы направленного света. Груши на COB технологии изготавливать смысла большого нет, так как COB светодиоды имеют очень малый угол рассеивания — всего 120 градусов.

Поэтому на основе таких светодиодов делают источники света (лампы, светильники) именно направленного света, такие как прожекторы.

А если нужен рассеянный свет, то выходят из положения применением SMD диодов, размещая их на матрице в одной плоскости, которую прикрепляют к радиатору для теплоотвода. А свет рассеивается за счет матовой колбы.

Но так или иначе, в любом случае, угол рассеивания гораздо хуже чем у филаментных — где-то 180 градусов, а то и меньше.

Преимущество такой технологии в том что, она позволяет хорошо отводить тепло.

Особенно если в конструкции применён хороший радиатор.

Еще некоторые производители пытаются выйти из положения за счёт увеличения сферы матового рассеивателя (пластиковой колбы), дабы увеличить сам угол рассеивания.

Вот как раз в таких LED лампах угол приближен к 270 градусам.

Но, в любом случае, за счёт матового рассеивателя КПД лампы снижается, т.к. часть света теряется вот в этом самом рассеивателе. Чтобы уйти от этой «потери света» изобрели вот такие вот филаменты.

В них применяются нитевидные светодиодные матрицы. Это не один светодиод, а типа COB технология, только здесь она называется COG (Chip on Glass).

В COG на стеклянное основание нарощены светодиоды и покрыты люминофором ( которое как раз таки и светится тем или иным цветом свечения).

Для того чтобы отводить тепло этих нитевидных светодиодов, внутрь закачан (по сути должен быть закачан по технологии) газ, на основе гелия. Вот он обладает хорошей теплопроводностью и текучестью. Он там внутри за счет конвекции он отводит тепло от светодиодов к стеклянной колбе, а та уже отдает в окружающую среду.

Так вот мощность филаментных ламп ограничена ёмкостью вот этой колбы, и сколько туда газа можно закачать.

Поэтому невозможно поставить там 20-30 таких светодиодных нитей. Да, теоретически они будут светить, но не долго, т.к. быстро перегреются и выйдут из строя.

Поэтому как и классические LED лампы, филаментные ограничены в мощности. В маленькой лампочке нельзя реализовать 20Вт, а обычно 5-7Вт.

Максимум, что мне встречалось это 18Вт в А60 колбе у LEDeX, и то с применением хорошего радиатора. Так что в принципе для долгосрочной службы лампы реализовать больше мощности уже не получится.

Так и в филаментных мощность лампы ограничена размерами, а точнее емкостью колбы.

На пример, Feron заявляют, что реализовали на этой лампе 7Вт.

Но насколько я уже сталкивался с этими лампами, в среднем мощность одной нити составляет порядка 1Вт.

Соответственно если нитей четыре, то получается 4 Вт. Но у каждого производителя разные комплектующие и возможно в одной нити может быть конечно и больше 1Вт. Но это очень просто замерять.

Здесь вот чудес нет, и она не 7 Вт. Как я и подозревал, 3-4 Вта — вот такая фактическая мощность. Как видите, достаточно легко с этими лампами прикинуть мощность: просто смотрите, сколько у неё нитей. И помните: одна нить потребляет порядка 1Вт.

К тому же коэффициент пульсации порядка 25%, а это, в любом случае, больше чем санитарные нормы. Поэтому для бытового использования в домашних условиях я бы такой лампу наверное не применял.

Из плюсов: лампа не греется, и буквально чуть тепленькая. Хотя на 4Вт… конечно, чего бы она нагревалась. И обычная LED лампа в 4Вт греться почти не будет. Но КПД у филаментной лампы выше.

Сейчас они пока конечно дороже чем обычные на традиционных SMD диодах.

Особенно разница ощущается в ряду с удешевленными лампами на так называемых, композитных радиаторах. Там радиатор где-то есть, а где-то нет. Так для чего имеет смысл покупать такие вот филамент-лампочки?

Лампы с таким нитевидным светодиодом отлично подходят именно для хрустальных светильников и люстр.

Потому что для хрустальных светильников важен, вот этот эффект, чтобы свет играл на грани хрусталя. А с матовым источником хрустальные люстры переливаться не будут.

Ну и потом так как КПД такой лампы лучше, она и свет рассеивает лучше. И там, где Вам нужен именно хороший угол рассеивания, вот такие филаменты подойдут лучше всего.

Охлаждение

Существует ложное заблуждение, что светодиоды не греются. Наоборот, они нагреваются сильно, а некоторые микросхемы не работают и нескольких минут без охлаждения.

У небольших светодиодов, находящихся в корпусах SMD-типа, тепло передается к установленным через них контактных площадках.

Мы уже знаем, что один филамент потребляет в среднем 1 Вт. Для сравнения в SMD-диодах на 1 Вт мощности конструктивно предусматривается около 25-30 кв. см охладительного устройства. И здесь возникает вопрос по поводу охлаждения ламп.

Учтите следующее:

  1. Филамент представляет собой матрицу.
  2. Конструктивно за матричной часть впаяны диоды, которые выделяют незначительный объем тепла из-за малой мощности. К примеру, если поделить 1 Вт на 28 лампочек, получается в среднем 0,036 Ватт на один светодиод.

Для отвода тепла используется гелий или специальный газ, обеспечивающий минимальный нагрев до 55-60 градусов Цельсия. Это позволяет использовать их в светильниках с тканевыми, бумажными и пластиковыми лампами. При этом нитка филаментной лампы нагревается до 100 градусов Цельсия.

Рейтинг светодиодных ламп для дома по производителям и надежности, ТОП 45 популярных моделей

Популярные производители

С применением грунтовки бетон контакт, его базовыми характеристиками разобрались, ознакомимся с отличительными особенностями составов от разных производителей.

Грунт марки Knauf Источник stpulscen.ru

За образец возьмём оригинальный вариант Betokontakt: сохнет 3-4 часа, консистенция немного густая, состояние вязкое, наполнитель мелкофракционный. Ниже рассмотрим отдельные свойства аналогов:

  • Боларс – излишне густой, тяжёлый в работе, сохнет более суток;
  • Олимп – дорого стоит, но не уступает оригинальному составу;
  • Основит (Беттоконт) – песок быстро оседает, сохнет до 2 часов, изготовитель ограничивает применение только под гипсовые растворы;
  • Плитонит – наполнитель имеет малый вес, поэтому оседает медленно, не требуется частое перемешивание;
  • Пуфас – отмечен более низкой адгезий к бетону на фоне Betokontakt;
  • Старатели – сохнет до 4 часов, фракция песка крупная, что актуально для черновой выравнивающей отделки, тяжёлой облицовки;
  • Церезит – самый распространённый объект для подделок.

Под немецким брендом Knauf производят относительно недорогой грунт. Он отличается низкой влагостойкостью, поэтому наносить жидкие растворы не рекомендуется. В противовес ставят влагостойкий образец с мраморной крошкой под маркой Shtock.

Грунт марки Akrimax-Lux Источник storg.ru

Инструменты для нанесения

Выбор того или иного малярного инструмента зависит от нескольких моментов. Основные – это природа строительного материала, форма, состав и структура основания, удобство работы. Бетон контакт – жидкая масса, по консистенции схожа с кефиром, бывает немного гуще.

Грунтование ровной поверхности малярным валиком Источник eyecorrector.ru

Здесь краскопульт не подойдёт ещё и из-за твёрдого зернового наполнителя.

Так как в состав грунтовки бетон контакт не входят органические растворители, кислоты, щелочи, иные агрессивные компоненты, то для работы допустимо применение инструментов с любыми щетиной и шубками по природе. Но ограничения все же имеются.

Мягкие материалы из-за песка быстро приходят в негодность. Плоские кисти мало берут на себя густой массы и плохо распределяют наполнитель по основанию. Рациональнее использовать макловицы с жёсткой или средней по жёсткости щетиной. А валиком в целом сложнее работать по трём причинам:

  • зерновой компонент неравномерно распределяется на поверхности;
  • твёрдые частицы активно разлетаются по площади в зависимости от скорости вращения валика;
  • короткий ворс и мех мало грунта берут, а длинный ворс значительно отягощает инструмент и сильнее брызгается.

Как вывод грунт бетоноконтакт с минимальными потерями и максимальным качеством будет нанесён посредством макловицы с синтетической либо смешанной щетиной.


Распределение бетоконтакта макловицей Источник gidpokraske.ru

По длине лучше выбирать среднюю. Валиком работать заметно легче и быстрее, но увеличится расход наносимого акрилового состава, неравномерно распределится твёрдый наполнитель, образуется много мусора и брызг.

Во время грунтования важно защитить кожный покров от бетоконтакта. То же касается одежды с обувью, если она не рабочие

До высыхания состав легко смывается и отстирывается. Но брызги с каплями начинают затвердевать уже через несколько минут.

После высыхания грунт удалить будет весьма затруднительно из-за его высокой адгезивной способности. С ткани придётся срезать, соскабливать, но повреждений полностью не избежать. С волосяного покрова устранить бетоноконтакт можно только вместе с волосами. Облегчить задачу, снизить травматичность позволяют жирный крем или масло.

Подключение светодиодной ленты 24В

Подключение светодиодной ленты производится к блоку питания на 24В с соблюдением полярности и с этой задачей должен успешно справиться любой человек, даже не сильно знакомый с электричеством. Самой сложной частью в процессе подключения может оказаться припаивание проводов к светодиодной ленте, если в комплекте не нашлось специального коннектора для подключения.

Существует такое правило при подключении низковольтной светодиодной ленты, что ее длина не должна превышать пяти метров. Это особенно актуально для 12В, но при подключении LED ленты на 24В при необходимости общую длину можно увеличить до 10 метров, так как при таком напряжении ток будет меньше. Это ограничение применяется для того, чтобы не перегружать токоведущие дорожки светодиодной ленты. От протекания большого тока они начинают нагреваться, еще больше нагревая и без того горячие светодиоды. К тому же из-за сопротивления дорожек ток на последних в цепи светодиодах будет меньше, и они будут не так ярко светить.

При подключении светодиодной ленты 24В длиной 10м может понадобится дополнительная запитка LED ленты с другого конца. Получается, что оба конца будут подключены к источнику питания и светодиодная лента будет одинаково светиться по всей длине.

Если нужно подключать большую длину светодиодной ленты на 24 вольта, то придется отдельные ее участки подсоединять к источнику питания параллельно. В этом случае количество подключенных светодиодных лент ограничивается мощностью светодиодного драйвера.

При подключении большого количества LED лент понадобится мощный светодиодный драйвер. Но такие драйверы будут иметь большие габариты и стоимость. Выходом из положения может стать приобретение нескольких блоков питания на меньшую мощность. Это может оказаться значительно дешевле и удобнее в монтаже.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: